COUNTING POINTS ON ELLIPTIC CURVES OVER F2n,
نویسندگان
چکیده
In this paper we present an implementation of Schoofs algorithm for computing the number of i"2m-P°mts °f an elliptic curve that is defined over the finite field F2m . We have implemented some heuristic improvements, and give running times for various problem instances.
منابع مشابه
Compact Representation of Elliptic Curve Points over F2n
finite fields, elliptic curves, cryptography A method is described to represent points on elliptic curves over F2n‚ in the context of elliptic curve cryptosystems‚ using n bits. The method allows for full recovery of the x and y components of the point. This improves on the naive representation using 2n bits and on a previously known compressed representation using n + 1 bits. Since n bits are ...
متن کاملCompact Representation of Elliptic Curve Points over F(sub (2 sup n))
finite fields, elliptic curves, cryptography A method is described to represent points on elliptic curves over F2n‚ in the context of elliptic curve cryptosystems‚ using n bits. The method allows for full recovery of the x and y components of the point. This improves on the naive representation using 2n bits and on a previously known compressed representation using n + 1 bits. Since n bits are ...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملThe Sea Algorithm in Characteristic 2
The Schoof-Elkies-Atkin algorithm counts the number of rational points on elliptic curves over finite fields. This paper presents a number of optimizations specific for the characteristic two case. We give a detailed description of the computation of modular polynomials over F2n and the search for an eigenvalue in the Elkies algorithm. With our implementation, we were able to count the number o...
متن کامل