COUNTING POINTS ON ELLIPTIC CURVES OVER F2n,

نویسندگان

  • ALFRED J. MENEZES
  • SCOTT A. VANSTONE
  • ROBERT J. ZUCCHERATO
  • A. J. MENEZES
  • S. A. VANSTONE
  • R. J. ZUCCHERATO
چکیده

In this paper we present an implementation of Schoofs algorithm for computing the number of i"2m-P°mts °f an elliptic curve that is defined over the finite field F2m . We have implemented some heuristic improvements, and give running times for various problem instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Representation of Elliptic Curve Points over F2n

finite fields, elliptic curves, cryptography A method is described to represent points on elliptic curves over F2n‚ in the context of elliptic curve cryptosystems‚ using n bits. The method allows for full recovery of the x and y components of the point. This improves on the naive representation using 2n bits and on a previously known compressed representation using n + 1 bits. Since n bits are ...

متن کامل

Compact Representation of Elliptic Curve Points over F(sub (2 sup n))

finite fields, elliptic curves, cryptography A method is described to represent points on elliptic curves over F2n‚ in the context of elliptic curve cryptosystems‚ using n bits. The method allows for full recovery of the x and y components of the point. This improves on the naive representation using 2n bits and on a previously known compressed representation using n + 1 bits. Since n bits are ...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

The Sea Algorithm in Characteristic 2

The Schoof-Elkies-Atkin algorithm counts the number of rational points on elliptic curves over finite fields. This paper presents a number of optimizations specific for the characteristic two case. We give a detailed description of the computation of modular polynomials over F2n and the search for an eigenvalue in the Elkies algorithm. With our implementation, we were able to count the number o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010